Synthesis of Isotope Enriched \((\text{CN}_3\text{H}_6)_2[^{57}\text{Fe}(\text{CN})_5\text{NO}]\) starting from \(^{57}\text{Fe}\)

Christoph Janiak\(^a\)\(^*,\) Thomas Dorn\(^a\), Hauke Paulsen\(^b\), and Bernd Wrackmeyer\(^c\)

\(^a\) Freiburg, Institute für Anorganische und Analytische Chemie der Universität
\(^b\) Lübeck, Institut für Physik, Medizinische Universität
\(^c\) Bayreuth, Laboratorium für Anorganische Chemie der Universität

Received February 1st, 2001.

Dedicated to Professor Dr. Kurt Dehnicke on the Occasion of his 70th Birthday

Abstract. A high-yield, mmol-scale synthesis of pure guanidinium nitroprusside, \((\text{CN}_3\text{H}_6)_2[^{57}\text{Fe}(\text{CN})_5\text{NO}]\) (GNP) from iron metal is described. The iron metal contained pieces of 95.3% \(^{57}\text{Fe}\) together with normal iron so that an isotope enrichment in \(^{57}\text{Fe}\) of 25% was achieved. Single-crystals of GNP could be grown in cubic shape and dimensions of about \(3 \times 4 \times 4 \text{ mm}^3\). The purity of the GNP product and the intermediates \(K_d[^{57}\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}\) and \(Na_d[^{57}\text{Fe}(\text{CN})_6] \cdot 2\text{H}_2\text{O}\) was ascertained by \(^{57}\text{Fe}\) Mössbauer spectroscopy as well as \(^{13}\text{C}, ^{14}\text{N}\) and \(^{57}\text{Fe}\) NMR spectroscopy. The \(^{57}\text{Fe}\) NMR chemical shift for \([^ {^{57}\text{Fe}(\text{CN})_5\text{NO}]\) in GNP was detected at \(+2004.0\) ppm [vs Fe(CO)\(_3\)].

Keywords: Sodium nitroprusside, Guanidinium nitroprusside, Mössbauer spectroscopy \((^{57}\text{Fe})\); NMR spectroscopy \((^{57}\text{Fe})\)

Synthese von Isotopen-angereichertem \((\text{CN}_3\text{H}_6)_2[^{57}\text{Fe}(\text{CN})_5\text{NO}]\) ausgehend von \(^{57}\text{Fe}\)

Inhaltsübersicht. Es wird eine Synthese mit hoher Ausbeute und im mmol-Bereich von reinem Guanidiniumnitroprussiats, \((\text{CN}_3\text{H}_6)_2[^{57}\text{Fe}(\text{CN})_5\text{NO}]\) (GNP) ausgehend von Eisenmetall beschrieben. Das Eisenmetall enthält Stücke von 95.3%-igem \(^{57}\text{Fe}\) und normalem Eisen, so dass eine Isotopenanreicherung in \(^{57}\text{Fe}\) von 25% erreicht wurde. Einkristalle von GNP konnten als Quader mit Abmessungen von etwa \(3 \times 4 \times 4 \text{ mm}^3\) gezüchtet werden. Die Reinheit des GNP-Produktes und der Zwischenprodukte \(K_d[^{57}\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}\) und \(Na_d[^{57}\text{Fe}(\text{CN})_6] \cdot 2\text{H}_2\text{O}\) wurde mittels \(^{57}\text{Fe}\) Mössbauer Spektroskopie und für \(K_d[^{57}\text{Fe}(\text{CN})_6] \cdot 3\text{H}_2\text{O}\) auch mit \(^{13}\text{C}, ^{14}\text{N}\) und \(^{57}\text{Fe}\) NMR Spektroskopie überprüft. Die \(^{57}\text{Fe}\) NMR chemische Verschiebung für \([^ {^{57}\text{Fe}(\text{CN})_5\text{NO}]\) in GNP wurde bei \(+2004.0\) ppm [vs Fe(CO)\(_3\)] detektiert.

Introduction

The complex pentacyanonitrosylferrate(II) or nitroprusside anion \([\text{Fe(CN)}_5\text{NO}]^2-\) (1) is a species of high academic [1, 2] and pharmaceutical [3] interest. The sodium salt, \(Na_2[\text{Fe(CN)}_5\text{NO}] \cdot 2\text{H}_2\text{O}\) (sodium nitroprusside) is given as a medicine to lower the blood pressure e.g. during operations or heart attacks [3, 4].

\[
\begin{align*}
\text{NC} & \quad \text{Fe} \quad \text{CN} \\
\text{CN} & \quad \text{Fe} \quad \text{CN} \\
\end{align*}
\]

The ambidentate NO ligand is normally, i.e. in the ground state, N-bonded to the metal (M) [5]. In several nitrosyl complexes metastable states have been discovered that can be excited and deexcited by irradiation with light. Due to this property these complexes are promising materials for display devices and for optical memory devices with extremely high capacity. Based on X-ray diffraction and IR data an M–ON linkage isomer has been proposed for at least one of the metastable states [2, 6]. The possibility of M–NO vs. M–ON linkage isomers is especially relevant for metal nitrosyl porphyrins [6] in view of the biological role of NO [7]. For further investigations of these metastable states, e.g. by Mössbauer spectroscopy or nuclear inelastic scattering [8], it is helpful to use \(^{57}\text{Fe}\) isotope enriched material. Therefore, we describe here the synthesis of guanidinium nitroprusside (GNP), \((\text{CN}_3\text{H}_6)_2[^{57}\text{Fe}(\text{CN})_5\text{NO}]\) with isotope enrichment in \(^{57}\text{Fe}\) starting from \(^{57}\text{Fe}\) metal. GNP is a standard material for such investigations [9]. GNP offers the advantage over other nitrosyl complexes that all Fe–N–O axes are oriented nearly parallel in its crystalline state [10, 11].

The general synthesis has, of course, already been described in the literature. The problem presented here when using \(^{57}\text{Fe}\) is to carry out these syntheses with small quantities on a mmol scale. This is not a trivial problem due to, for example, the extremely high
solubility of some of the intermediates. Furthermore, single crystals of the final GNP product should be made available in a more regular cubic shape with crystal sizes of about $2 \times 2 \times 2 \text{mm}^3$ instead of the usual needle shape. The purity of the product and of intermediates has been checked by 57Fe Mössbauer and 57Fe NMR spectroscopy with respect to contaminants of other iron compounds and oxidation states.

Results and Discussion

The synthetic routes were tested starting with normal iron metal in the same quantity before carrying out the procedure with the expensive 57Fe metal (current price US-$4,000$/mg). Thus, each reaction has at least been carried out twice and reproducibility on the given mmol scale can be ensured. An isotope enrichment of about 25% was chosen, so that 0.2 g of 57Fe metal (95.3% isotope purity) were blended with 0.6 g of normal iron metal.

The transformation of iron metal to FeCl$_2$ was done by reaction with conc. hydrochloric acid in methanol under inert gas (eq. (1)) [12]. To exclude the formation of Fe$^{	ext{III}}$ impurities, the solution was filtered over iron powder.

$$
\text{Fe} + 2\text{HCl} \xrightarrow{\text{H}_2\text{O, MeOH}} \text{FeCl}_2 + \text{H}_2
$$ (1)

The potassium hexacyanoferrate complex was formed from an alkaline solution of FeCl$_2$ through addition of an about 1.5-fold excess of KCN. An Fe(CN)$_2$ precipitate could be observed as the intermediate (eq. (2) and (3)).

$$
\text{Fe}^{2+} + 2\text{CN}^- \rightarrow \text{Fe(CN)}_2\downarrow
$$ (2)

$$
\text{Fe(CN)}_2\downarrow + 4\text{KCN} \rightarrow K_4[\text{Fe(CN)}_6]
$$ (3)

For the subsequent reaction with HNO$_3$, the excess of KCN had to be removed. A presence of KCN prevented the clean formation of the nitroprusside anion. Separation of $K_4[\text{Fe(CN)}_6]$ and KCN could be achieved dissolving the mixture in water. Through addition of the same volume of methanol the hexacyanoferrate precipitated again while KCN remained in solution. After recrystallization of $K_4[\text{Fe(CN)}_6] \cdot 3\text{H}_2\text{O}$ from hot/cold water the purity with respect to other iron compounds was checked by 57Fe Mössbauer and 57Fe NMR spectroscopy. The Mössbauer spectrum of $K_4[\text{Fe(CN)}_6] \cdot 3\text{H}_2\text{O}$ (Figure 1) shows the expected singlet. The errors given with the Mössbauer parameters in Table 1 may appear rather large. This is, however, due to the large energy window of ±11 mm/s which was chosen so as to detect any possible impurity.

Usually an analysis of Mössbauer spectra with respect to impurities and an estimation of their content is done by comparing the area of different subspectra, which are for instance fitted with Lorentzian lines.

![Mössbauer spectrum of $K_4[\text{Fe(CN)}_6] \cdot 3\text{H}_2\text{O}$ after preparation from iron metal as described (25% enrichment of 57Fe). A single Lorentzian (solid line, parameters in Table 1) is used to fit the experimental data (+). The difference ΔI between experiment and fit is given in units of σ_I.](image)

Provided the Lamb-Mössbauer factor and the enrichment of 57Fe are the same for each iron species, the area of a subspectrum is directly proportional to the content of the corresponding species in the sample. In all cases shown here the purity of the compounds did not allow for a fit of any additional subspectrum. The difference $\Delta(I)$ between the measured count rates $I(v)$ at velocity v and the fit curve resembles a Gaussian type noise. The standard deviation of this noise is close to the standard deviation $\sigma_i = \sqrt{I}$ of the mean count rate I assuming a Poisson distribution of the count rates (Fig. 1, 2, and 4). In other words the differences between the fit curves and the experimental data give no indication for the existence of any impurities. Only an upper limit for a possible impurity of the sample can be given, e.g. by the relation σ_A / A, where $A = \sum I_i = I(v)$ is the area of the fitted spectrum, I_∞ is the count rate off resonance, $\sigma_A = \sigma_I / \sqrt{n}$ is the standard deviation of the area, and n is the number of channels used for recording the count rates.

Sodium nitroprusside was obtained from an aqueous solution of $K_4[\text{Fe(CN)}_6]$ and conc. nitric acid (eq. (4)) [13]. This transformation is the crucial step in the overall synthetic route. With less than the required amount (90%) only of nitric acid an insoluble precipitate occurred. The final solution did not contain the nitroprusside product. With an excess of nitric acid (115%) and an elevated reaction temperature of 98°C a yellow-red product was obtained. At 60°C an excess of nitric acid could still be used without alteration of the product yield. Also, when using the required amount of HNO$_3$, the increase in temperature did not effect the nitroprusside product. For the neutralization of the reaction mixture it proved essential to avoid an excess of Na$_2$CO$_3$. Thus, the addition of solid sodium
carbonate was monitored with a pH-meter until a value of pH = 7.4 was reached. Addition of methanol to the narrowed reaction solution precipitated the NaNO₃ side product. The sodium nitroprusside could be obtained in crystalline form as the dihydrate by slow solvent evaporation at ambient temperature.

\[\text{K}_4[\text{Fe(CN)}_6] \cdot \text{H}_2\text{O} \rightarrow \text{K}_4[\text{Fe(CN)}_6] \cdot \text{H}_2\text{O} \]

The purity with respect to other iron compounds of a crystalline sample of Na₄[Fe(CN)₆]NO was checked by ⁵⁷Fe Mössbauer spectroscopy. The Mössbauer spectrum shows the expected doublet (Figure 2).

Guanidinium nitroprusside (GNP) was prepared from sodium nitroprusside by twofold cation exchange via the silver nitroprusside [11]. Upon addition of silver nitrate to a solution of sodium nitroprusside, the colorless silver nitroprusside precipitates and, thus, can easily be separated from the soluble sodium nitrate byproduct (eq. (5)). When a slurry of the silver nitroprusside was then reacted with guanidinium chloride the byproduct of silver chloride precipitates and allowed for a facile synthesis of pure GNP (eq. (6)). It was only important here to carry out the reactions mostly in the dark to avoid contamination with elemental silver.

\[\text{Na}_4[\text{Fe(CN)}_6] \cdot \text{NO} + 2\text{AgNO}_3 \rightarrow 4\text{Ag}_2[\text{Fe(CN)}_6] \downarrow + 2\text{NaNO}_3 \]
\[\text{Ag}_2[\text{Fe(CN)}_6] \downarrow + 2\text{CN}_2\text{H}_4\text{Cl} \rightarrow (\text{CN}_2\text{H}_4)_2[\text{Fe(CN)}_6] \downarrow + 2\text{AgCl} \downarrow \]

GNP is very good soluble in water (solubility 1800 g/l). This made the growth of large single crystals from a small amount of sample (less than 1 g) difficult. Initially alcohols (ethanol, isopropanol, n-butanol) were tried as solvents. As expected GNP was less soluble in alcohols. However, the nitroprusside was instable in these organic solvents. A black precipitate occured after 3 to 4 days. Eventually slow solvent evaporation from an aqueous solution by a setup as shown in Figure 3 proved successful in growing large crystals. Instead of needle-shaped crystals [10] large cubic crystals of dimensions of approximately 3 x 4 x 4 mm³ could be obtained. The surrounding saturated NaCl solution prevented crystal formation at the vertical glass walls.
Fig. 3 Setup for the crystal growth of GNP.

A Mössbauer spectrum was collected from one of the crystals (Figure 4). The purity of the sample was estimated as described above for K[Fe(CN)₆] · 3 H₂O. Again, the estimate of at the most 1% impurity (Table 1) is a rough upper limit. From the Mössbauer spectra it can clearly be stated that there is no significant indication for an iron-containing impurity.

13C, 14N, and 57Fe NMR spectroscopy

Chemical shifts and coupling constants measured from aqueous solutions of K[Fe(CN)₆] and GNP are given in Table 2.

The 13C NMR signals of both compounds are sharp and the broad 14N NMR signal of [Fe(CN)₆]³⁻ is approximately in the same place as reported [14]. In the presence of paramagnetic [Fe(CN)₆]³⁻, both 13C and 14N NMR signals would be markedly affected [15]. The 57Fe NMR spectra of both compounds are shown in Figure 5. The δ57Fe value of 2455.3 for [Fe(CN)₆]³⁻ differs slightly from the value given in the literature (+2497, measured from a 1 M aqueous solution at pH = 12 [16]). The δ57Fe value of ferrocene as a second external reference was determined (δ57Fe = 1541.7 for a 0.8 M solution in CDCl₃) and found in reasonable agreement with reported values [δ57Fe = 1535.2 (1 M solution in THF); = 1532.4 (in C₆H₆)] [16, 17]. Therefore, it appears that the δ57Fe value of [Fe(CN)₆]³⁻ is dependent on the pH value of the solution. The extremely sharp (h₁/₂ ≤ 0.6 Hz) 57Fe NMR signal of [Fe(CN)₆]³⁻ was detected after less than 10 min of spectrometer time by the single pulse (30°) method, whereas the 57Fe NMR signal of GNP was not visible under the same conditions. The 14N NMR signal of the NO ligand is sharp, and since scalar 57Fe-14N coupling cannot be neglected [see the substantial values of /J(57Fe,14C)/ in Table 2], broadening of the 57Fe NMR signal can be expected. Together with a long relaxation time T₁(57Fe), difficulties can arise for recording of this 57Fe NMR signal, at least for samples with 57Fe at natural abundance. Indeed, it is reported that this particular 57Fe NMR signal of [Fe(CN)₆NO]²⁻ had not been found [16]. Therefore, a very small pulse angle (15°) was used, and data were collected for ca. 3 h. The result was a weak signal at δ57Fe = 2004; this signal was reproduced under different experimental conditions (spectral

Table 2 57Fe, 14N and 13C NMR data for K[Fe(CN)₆] and GNP

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ57Fe</th>
<th>δ14N</th>
<th>δ13C</th>
<th>/J(57Fe,14C)/</th>
</tr>
</thead>
<tbody>
<tr>
<td>K[Fe(CN)₆]</td>
<td>+2455.3</td>
<td>-105 ± 8</td>
<td>178.8</td>
<td>15.8</td>
</tr>
<tr>
<td>(saturated in D₂O; pH = 7)</td>
<td>h₁/₂ > 0.6 Hz</td>
<td>h₁/₂ > 1500 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNP</td>
<td>+2004.0</td>
<td>-5.1 ± 0.2 (NO)⁹</td>
<td>134.6 (cis-CN)</td>
<td>15.5 (cis-CN)</td>
</tr>
<tr>
<td>(0.1 g in 0.5 ml of D₂O)</td>
<td>h₁/₂ = 2.5 ± 0.5 Hz</td>
<td>h₁/₂ = 7 ± 1 Hz</td>
<td>132.6 (trans-CN)</td>
<td>12.2 (trans-CN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>158.2 (CN)₆</td>
<td></td>
</tr>
</tbody>
</table>

⁹ Chemical shifts δ57Fe (±0.1), δ13C (±0.1), and coupling constants /J(57Fe,14C)/ (±0.3 Hz). Both samples had an 57Fe content of about 25%. ⁹ A very broad hump around δ14N = -100 represents the unresolved 14N NMR signals of the CN ligands in cis and trans positions relative to NO. δ14N (NH₃) = -310 ± 2.
width, pulse offset, acquisition time), including an experiment lasting 12 h in order to double the signal-to-noise ratio. The 57Fe NMR signal of GNP is broader ($h_{1/2} = 2.5 \pm 0.5$ Hz) than the one for $\text{[Fe(CN)}_6]^{4-}$ complexes. The rolling baseline in Figure S5B can in principle be corrected by applying certain pulse sequences [18]; however, these experiments tend to reduce the signal-to-noise ratio which is critical in the case of 57Fe NMR spectroscopy.

Conclusions

57Fe isotope enriched nitroprusside compounds can be prepared in high-yield and in high purity on a small scale by starting from iron metal as the 57Fe source. Large single crystals of guanidinium nitroprusside (GNP) were grown by slow solvent evaporation from a saturated aqueous GNP solution in the presence of a saturated NaCl solution. 13C, 14N, and 57Fe NMR shifts and coupling constants have been measured from aqueous solutions of 57Fe-isotope enriched $\text{K}_4\text{[Fe(CN)}_6]$ and (CN_3H_6)$_2\text{[Fe(CN)}_2\text{NO}]$ (GNP).

Experimental

The solvent water was deionized and degassed. Methanol was degassed. In both solvents the dissolved air was removed by five cycles of evacuation and refilling with nitrogen. The nitrogen inert gas had a purity of 99.999% (5.0)
and was used without further purification. 57Fe was obtained from AMT (Advanced Materials Technologies, Kiryat Ono, Israel) as iron foil in pieces of 2×0.10 g. The isotope purity was certified to 95.3% in 57Fe. Hydrochloric acid (HCl) was obtained from J.T. Baker (36–38%, Baker analyzed), HNO$_3$ from Riedel-de-Haën (65%, analytical reagent), (CN_3H_6)Cl from Aldrich (99%).

An isotope enrichment for 57Fe of 25% was aimed for the samples by mixing the isotope enriched iron foil with the normal iron. The temperatures given refer to the temperature of the heating bath.

57Fe Mössbauer spectroscopy: 57Fe Mössbauer spectra were recorded with a conventional spectrometer in constant-acceleration mode with a 57Co[Rh] source. The velocity calibration was performed with a Na$_2$Fe(CN)$_5$NO : 2H$_2$O single crystal for which the quadrupole splitting (ΔE$_Q$) and the isomer shift (δ) are known with high accuracy. The measured isomer shifts are referred to an α-Fe standard at room temperature ($\delta_{\text{Fe}} = 0.11 \pm 0.01$ mm/s + $\delta_{\text{Fe}}^{\text{Rh}}$). The experimental spectra were fitted by a sum of Lorentzian lines by means of a least-squares procedure.

13C, 14N and 57Fe NMR spectroscopy: 13C (125.8 MHz) and 14N (36 MHz) NMR spectra were recorded for aqueous solutions of $\text{K}_4\text{[Fe(CN)}_6]$ and GNP using a Bruker DRX 500 NMR spectrometer equipped with a standard 5 mm multinuclear probehead [δ^{13}C values are given relative to external TMS (δ^{13}C = 0 for $\Xi = 25.145004$ MHz), and δ^{14}N values relative to external neat MeNO$_2$ (δ^{15}N = 0 for $\Xi = 7.226324$ MHz)]. The 57Fe NMR spectra were measured using the same instrument with a low-frequency 5 mm probehead tunable to frequencies in the range for 185O to 13C. Routine experimental parameters were used to record the 13C and 14N NMR spectra. In the case of 57Fe NMR, the length of the 90° pulse (80 μs) was calibrated by measuring the 57Ge NMR signal of GeCl$_4$ (17.5 MHz), assuming that this parameter does not change significantly when the probehead is tuned for 57Fe (16.1 MHz). The frequency $\Xi^{(57)\text{Fe}} = 3.237798$ MHz given in the literature [19] for neat Fe(NO)$_3$ was used as an external reference. The 57Fe NMR spectrum of the $\text{[Fe(CN)}_3]^{4-}$ anion was readily obtained by using 30° pulses, whereas under these conditions the 57Fe NMR signal of GNP could not be detected. Application of 15° pulses and ca. 3 h of spectrometer time were necessary to obtain a weak 57Fe NMR signal (see Figure 5).

Iron(II) chloride, 57FeCl$_2$. A 50 ml Schlenk-flask was charged with 57Fe (0.20 g, 3.58 mmol) and normal iron (0.60 g, 11.00 mmol). The flask was evacuated and refilled with nitrogen. This procedure was repeated three times. Then degassed methanol (30 ml) and hydrochloric acid (37%, 4.0 ml, 48.3 mmol) was added. The mixture was stirred for 5 h at 60°C. After this time most of the iron metal had dissolved. The resulting light-green solution was filtered under nitrogen over a glass frit covered with 1–2 g of iron powder. The solvent was removed from the filtrate in vacuum. A light-green solid was obtained. Yield 1.70 g (13.41 mmol, 93%).

Potassium hexacyanoferrate(II), $\text{K}_4\text{[Fe(CN)}_6]$ · 3H$_2$O. Under nitrogen gas (57FeCl$_2$ (1.70 g, 13.41 mmol) was dissolved in water (10 ml). To this solution was added solid NaOH (1.00 g, 25.00 mmol) and a solution of KCN (6.10 g, 93.88 mmol) in degassed water (20 ml). A yellow solid precipi-
pitated immediately. Warming to 50°C gave a yellow solution. The solvent was removed in vacuum. The product was separated from excess KCN by dissolving the mixture in the minimum quantity of water at room temperature. To this solution was added the same amount of methanol. The slurry was heated to 50°C to give a clear solution which was slowly cooled to room temperature. The light-yellow precipitate formed was collected by filtration and recrystallized again from hot/cold water to give a light-yellow crystalline solid. Yield 5.50 g (13.02 mmol, 96%).

The product was studied by 57Fe Mössbauer and 57Fe NMR spectroscopy. No iron(III) impurities or other iron(II) compounds could be detected.

Sodium pentacyanonitrosylferrate(II), Na$_2$[57Fe(CN)$_2$NO] · 2H$_2$O. K_a[57Fe(CN)$_2$] · 3H$_2$O (1.70 g, 4.00 mmol) was dissolved in water (5 ml). The solution was warmed to 60°C and concentrated nitric acid (65%-HNO$_3$, 1.0 ml) was added. The mixture was stirred for 6 h at 60°C and for 2 d at room temperature. A blue-brown solution was obtained. With addition of solid Na$_2$CO$_3$ the pH of the solution was set to 7.2 under the control of a pH-meter. This solution was heated to reflux for 5 min. The color changed to red. About 70% of the solvent water were removed in vacuum at a bath temperature of 45°C. The remaining solution was cooled to room temperature. To it were added 30 ml of methanol to precipitate the NaN$_3$ side product. The filtrate was evaporated at ambient temperature in an oil pump vacuum to dryness to give the product which was used without further purification. The reaction was carried out twice. Yields 1.00 g and 1.06 g (85% and 90%).

The purity of a sample which was obtained from normal iron metal according to the same procedure was studied by 57Fe Mössbauer spectroscopy. No iron(III) impurities could be detected.

Silver pentacyanonitrosylferrate(II), Ag$_2$[57Fe(CN)$_2$NO] · 2H$_2$O. Solid silver nitrate (1.40 g, 8.24 mmol) was added to a solution of Na$_2$[57Fe(CN)$_2$NO] · 2H$_2$O (1.00 g, 3.36 mmol) in water (20 ml). The mixture was stirred for 3 h at 50°C in the dark. A colorless precipitate was obtained which was collected by centrifugation and decantation. The precipitate was washed five times with 5 ml of water each. The product was used without further purification. Yield 1.40 g (3.00 mmol, 88%).

Guanidinium pentacyanonitrosylferrate(II), (CN$_3$H$_2$)$_2$[57Fe(CN)$_2$NO]. In the dark (!), solid guanidinium chloride, CN$_3$H$_2$ · HCl (0.80 g, 8.37 mmol) was added to a slurry of Ag$_2$[57Fe(CN)$_2$NO] · 2H$_2$O (1.40 g, 2.99 mmol) in water (20 ml). The mixture was stirred for 24 h at room temperature. A redish solution with solid AgCl was obtained. The latter was separated by centrifugation and decantation. The clear solution was narrowed to about 5 ml in vacuum at ambient temperature.

Large crystals could be grown from this solution by slow solvent evaporation in a glass vial as shown in Figure 3. The crystal yield was 0.65 g (60%).

One of the single crystals was studied by 57Fe Mössbauer spectroscopy. No iron(III) impurities or other iron(II) compounds could be detected.

Acknowledgements. This work is supported by the Wissenschaftliche Gesellschaft in Freiburg, the DFG (grant 1a 466/10-1) and the Fonds der Chemischen Industrie.

References

